Operational aspects of the desulfurization process of energy gases mimics in biotrickling filters.
نویسندگان
چکیده
Biological removal of reduced sulfur compounds in energy-rich gases is an increasingly adopted alternative to conventional physicochemical processes, because of economical and environmental benefits. A lab-scale biotrickling filter reactor for the treatment of high-H(2)S-loaded gases was developed and previously proven to effectively treat H(2)S concentrations up to 12,000 ppm(v) at gas contact times between 167 and 180 s. In the present work, a detailed study on selected operational aspects affecting this system was carried out with the objective to optimize performance. The start-up phase was studied at an inlet H(2)S concentration of 1000 ppm(v) (loading of 28 g H(2)S m(-3) h(-1)) and inoculation with sludge from a municipal wastewater treatment plant. After reactor startup, the inlet H(2)S concentration was doubled and the influence of different key process parameters was tested. Results showed that there was a significant reduction of the removal efficiency at gas contact times below 120 s. Also, mass transfer was found to be the main factor limiting H(2)S elimination, whereas performance was not influenced by the bacterial colonization of the packed column after the initial startup. The effect of gas supply shutdowns for up to 5 days was shown to be irrelevant on process performance if the trickling liquid recirculation was kept on. Also, the trickling liquid velocity was investigated and found to influence sulfate production through a better use of the supplied dissolved oxygen. Finally, short-term pH changes revealed that the system was quite insensitive to a pH drop, but was markedly affected by a pH increase, affecting both the biological activity and the removal of H(2)S. Altogether, the results presented and discussed herein provide new insight and operational data on H(2)S removal from energy gases in biotrickling filters.
منابع مشابه
Biological sweetening of energy gases mimics in biotrickling filters.
Removal of hydrogen sulfide from waste and energy-rich gases is required, not only because of environmental health and safety reasons, but also because of operational reasons if such gases have to be used for energy generation. A biotrickling filter for the removal of ultra-high concentrations of H2S from oxygen-poor gases is proposed and studied in this work. Two laboratory-scale biotrickling ...
متن کاملThe control of mercury vapor using biotrickling filters.
The feasibility of using biotrickling filters for the removal of mercury vapor from simulated flue gases was evaluated. The experiments were carried out in laboratory-scale biotrickling filters with various mixed cultures naturally attached on a polyurethane foam packing. Sulfur oxidizing bacteria, toluene degraders and denitrifiers were used and compared for their ability to remove Hg 0 vapor....
متن کاملSulfur dioxide treatment from flue gases using a biotrickling filter-bioreactor system.
Complete treatment of sulfur dioxide (SO2) from flue gases in a two-stage process consisting of a biotrickling filter followed by biological post-treatment unit was investigated. The biotrickling filter could remove 100% of influent SO2 from simulated flue gas at an empty bed residence time of 6 s for a concentration range of 300-1000 ppm(v). All the absorbed SO2 was recovered in the biotrickli...
متن کاملTheoretical and Experimental Investigation of SO2 Adsorption from Flue Gases in a Fluidized Bed of Copper Oxide
Among the air pollutants, sulfur dioxide has been given special emphasis for posing dangers to the environment. SO2 emissions in the air have harmful effects on human health and the environment. Respiratory diseases and exacerbation of heart diseases are among dangerous symptoms for human health, especially when high concentrations of SO2 are emitted. Therefore, in the present study, a wide var...
متن کاملشناسایی میکروارگانیسمهای غالب بیوفیلتر چکنده در تصفیه هوای آلوده به فرمالدوئید و اتانول
Introduction: Identification of degrading microorganisms of toxic materials is regarded as an important step to complete air treatment systems. Effective microorganisms in treatment and elimination of pollutants seems to be different depending on the type of pollutants as well as environmental conditions. Identification of these microorganisms can determine optimum conditions for the system per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water research
دوره 45 17 شماره
صفحات -
تاریخ انتشار 2011